Thursday, May 31, 2012

Improve windows networking


Improve windows networking (especially if hosting webservers)


First of all, I forgive you for having to use windows to host your web server :)

Now that thats out of the way, here's how you speed up networking performance on windows (especially if you happen to host Apache, IBM HTTP Server, or any other web server on a windows machine)

Create a .reg file (eg: perf.reg) with the contents that follow:
Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters]
"MaxUserPort"=dword:00008000
"TcpTimedWaitDelay"=dword:0000001e
"TcpMaxDataRetransmissions"=dword:00000005

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces]
"TcpAckFrequency"=dword:00000001
"TcpDelAckTicks"=dword:00000000

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\AFD\Parameters]
"EnableDynamicBacklog"=dword:00000001
"MinimumDynamicBacklog"=dword:00000020
"MaximumDynamicBacklog"=dword:00001000
"DynamicBacklogGrowthDelta"=dword:00000010
"KeepAliveInterval"=dword:00000001

Double click on the file to merge its contents into the registry. Restart the machine.
You're done.







1)
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters
Value Name: MaxUserPort
Value Type: REG_DWORD
Valid Range: 5000-65534 (decimal) Default: 0×1388 (5000 decimal)
New Value: 65534
Description: This parameter controls the maximum port number used when an application requests any available user port from the system. Normally, ephemeral (that is, short-lived) ports are allocated between the values of 1024 and 5000 inclusive.
2)
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters
Value Name: TcpTimedWaitDelay
Value Type: REG_DWORD
Valid Range: 30-300 (decimal)
Default: 0xF0 (240 decimal)
New Value: 30
Description: This parameter determines the time that must elapse before TCP can release a closed connection and reuse its resources. This interval between closure and release is known as the TIME_WAIT state or 2MSL state. During this time, the connection can be reopened at much less cost to the client and server than establishing a new connection.
Normally, TCP does not release closed connections until the value of this entry expires. However, TCP can release connections before this value expires if it is running out of TCP control blocks (TCBs).
A lower TcpTimedWaitDelay setting means that the sockets wait in the TIME_WAIT state for less time. A higher MaxUserPort setting means that you can have more sockets in the TIME_WAIT state.




Tuesday, May 29, 2012

Login Oracle database using Windows User


Create Oracle External users in Windows

1. Create the Windows user:

start --> settings --> control panel --> administrative tools --> computer management --> user

2. Add the new user to the Oracle group:

start --> settings --> control panel --> administrative tools --> computer management --> groups

3. Add user to OS Database Administrator:

start --> programs --> oracle home --> configuration and migration tools --> administration for windows NT --> OS database administrator

4. Add user to OS Database Operators:

start --> programs --> oracle home --> configuration and migration tools --> administration for windows NT --> OS database operators

5. Add user to OS Administrator:

start --> programs --> oracle home --> configuration and migration tools --> administration for windows NT --> OS administrator

6. Add user to OS Operators:

start --> programs --> oracle home --> configuration and migration tools --> administration for windows NT --> OS operators

7. Add os_authent_prefix=OPS$ to your initialization parameters (pfile or spfile) and bounce Oracle database, if necessary.




remote_os_authent FALSE
os_authent_prefix OPS$


SQLNET.AUTHENTICATION_SERVICES in file sqlnet.ora contains NTS

CREATE USER "OPS$WIN-RGWOS2P8G1H\LDUSER" IDENTIFIED EXTERNALLY;

GRANT CONNECT TO "OPS$WIN-RGWOS2P8G1H\LDUSER";


connect to client machine with OS user

sqlplusw /@nbs1112srv



Friday, May 25, 2012

SQL Session Tracing




1. Start a sqlplus session to the database, and enable sql tracing with this command:

alter session set events '10046 trace name context forever, level 12';

The resulting trace file will be put in the USER_DUMP_DEST directory.
To find the location of this directory, as system, do:
SQL>show parameters user_dump_dest

2. Execute your code to reproduce the error/issue.

3. Turn off the trace using this command:

alter session set events '10046 trace name context off';

4. Please upload the trace file and the alert.log file


A 10046 trace creates an output dump file. Therefore, before you enable the 10046 trace event, you will need to set some database parameters that control the output of the dump file. These parameters include:

TIMED_STATISTICS – Must be set to TRUE to get timing information in your trace files.

MAX_DUMP_FILE_SIZE – Controls the maximum size of the trace file. For 10046 trace files, the default setting is generally too small.

USER_DUMP_DEST – This is the location the 10046 trace file(s) are written to.

STATISTICS_LEVEL – This should be set, at a minimum, to TYPICAL. When set to ALL, more information will be collected in the resulting trace files. All examples in this white paper are with STATISTICS_LEVEL set to TYPICAL.



Listener Tracing



We will need to trace a connection on both CLIENT ,SERVER and Listener endpoints to see what is happening.
Please collect traces for the good and the slow connections:

Please follow these steps:

1. Add the following parameters to the listener.ora:

TRACE_LEVEL_<listener_name>=16
TRACE_DIRECTORY_<listener_name>=<some_known_directory> (but not the root directory)
TRACE_FILE_<listener_name>=listener
TRACE_TIMESTAMP_<listener_name>=ON

Replace <listener_name> with the name of your listener, the default name is LISTENER.


2. Reload the listener (execute "lsnrctl reload <listener_name>").

3. Add the following parameters in the sqlnet.ora file on the CLIENT workstation:

TRACE_LEVEL_CLIENT=16
TRACE_DIRECTORY_CLIENT=<some_known_directory> (but not the root directory)
TRACE_FILE_CLIENT=client
TRACE_UNIQUE_CLIENT=ON
TRACE_TIMESTAMP_CLIENT=ON


4. Add the following parameters in the sqlnet.ora file on the SERVER:

TRACE_LEVEL_SERVER=16
TRACE_DIRECTORY_SERVER=<some_known_directory> (but not the root directory)
TRACE_FILE_SERVER=server
TRACE_TIMESTAMP_SERVER=ON


5. Attempt to reproduce the issue (connect from a client workstation) and verify if trace files were created.

>>> Please note that we need to group of traces, one when the connection is fine and one when there a delay.

6. Compress (in .zip or .tar.gz format) and send the trace files. Also please clarify in the name if it the good trace or the bad one.

7. Turn off tracing by setting all TRACE_LEVEL_<listener_name> = OFF and reload the listener.

8. Disable tracing by removing the TRACE lines from sqlnet.ora on the client and server



Tuesday, May 22, 2012

Database Link Creation Script



set pagesize 0
set linesize 30000
set long 500000
set longchunksize 500000
set trimspool on
set feed off


------------Drop Database link

Select 'DROP '||Decode(U.Name,'PUBLIC','public ')||'database link '||Chr(10)
||Decode(U.Name,'PUBLIC',Null, U.Name||'.')|| L.Name||Chr(10) ||';' TEXT
From Sys.Link$ L, Sys.User$ U
Where L.Owner# = U.User#;


------------Create Database link

SELECT 'create '||DECODE(U.NAME,'PUBLIC','public ')||'database link '||CHR(10)
||Decode(U.Name,'PUBLIC',Null, U.Name||'.')|| L.Name||Chr(10)
||' connect to ' || L.Userid || ' identified by values '''
||L.PASSWORDX||''' using ''' || L.host || ''''
||chr(10)||';' TEXT
From Sys.Link$ L, Sys.User$ U
WHERE L.OWNER# = U.USER#;


------------------------CHECK LINK

select 'SELECT INSTANCE_NAME,HOST_NAME FROM V$INSTANCE@' ||Db_Link || ';' from dba_db_links;

ORACLE 11G work with IPv6 addresses in addition to IPv4


ORACLE 11G work with IPv6 addresses in addition to IPv4

These are the simple steps that will make your DB 11g instance work with IPV6 environment.

 Configure Linux

To configure Linux with this specific IPv6 address, you modify the /etc/sysconfig/network-scripts/ifcfg-{device name} file.

In my case I modified the ifcfg-eth0 file. I had previously added an IPv6 address and will add a secondary IPv6 address for the IPv4 Mapped Address.

DEVICE=eth0

BOOTPROTO=none

ONBOOT=yes

HWADDR=00:50:43:ac:11:a2

TYPE=Ethernet

USERCTL=no

IPV6INIT=yes

PEERDNS=yes

NETMASK=255.255.0.0

IPADDR=192.168.110.77

GATEWAY=192.168.255.254

IPV6ADDR=2001:DB8::200C:417A/64

IPV6ADDR_SECONDARIES=::ffff:192.168.110.77/64

Configure the Database Listener

The next step is to configure the Listener for this IPv6 address.



LISTENER =

(DESCRIPTION_LIST =

    (DESCRIPTION =

      (ADDRESS_LIST =

 (ADDRESS = (PROTOCOL = TCP)(HOST = 2001:db8::200c:417a)(PORT = 1521))

       (ADDRESS = (PROTOCOL = TCP)(HOST = 192.168.110.77)(PORT = 1521))

      )

      (ADDRESS_LIST =

        (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC))

     )

   )

)



Configuring the Client

The last step is to create an appropriate TNS entry for your application

AVI =

(DESCRIPTION =

   (ADDRESS_LIST =

 (ADDRESS = (PROTOCOL = TCP)(HOST = 2001:db8::200c:417a)(PORT = 1521))

)

   (CONNECT_DATA =

     (SERVER = DEDICATED)

     (SERVICE_NAME = DB11g)

   )

)



AVI2 =

(DESCRIPTION =

   (ADDRESS_LIST =

  (ADDRESS =  (PROTOCOL = TCP)(HOST =192.168.110.77)(PORT = 1521))

)

   (CONNECT_DATA =

     (SERVER = DEDICATED)

     (SERVICE_NAME = DB11g)

   )

)

Test the Connection

use the utility TNSPING

database-server :/u/app/oracle/v11.2.0/network/admin > tnsping AVI


database-server :/u/app/oracle/v11.2.0/network/admin > tnsping AVI2


Used parameter files:

Used TNSNAMES adapter to resolve the alias

Attempting to contact (DESCRIPTION = (ADDRESS_LIST = (ADDRESS = (PROTOCOL = TCP)(HOST =192.168.110.77)(PORT = 1521))) (CONNECT_DATA = (SERVER = DEDICATED) (SERVICE_NAME = DB11g)))

OK (10 msec)

database-server :/u/app/oracle/v11.2.0/network/admin

in 11g UTL_INADDR.GET_HOST_ADDRESS gives me IPv6, while I need IPv4

in 11g UTL_INADDR.GET_HOST_ADDRESS gives me IPv6, while I need IPv4

SELECT  UTL_INADDR.GET_HOST_ADDRESS  FROM DUAL;


disable ipv6 on OS level

c:\Windows\System32\drivers\etc\hosts

---------------

ORA_CLIENT_IP_ADDRESS Returns the IP address of the client in a LOGON event, when the underlying protocol is TCP/IP

select sys_context('userenv','ip_address') from dual;





Monday, May 21, 2012

ORA-12839: cannot modify an object in parallel after modifying it


ORA-12839: cannot modify an object in parallel after modifying it


Affects:

Product (Component)  Oracle Server (Rdbms)
Range of versions believed to be affected  Versions >= 11.1 but BELOW 12.1
Versions confirmed as being affected
11.2.0.2
11.1.0.7
Platforms affected  Generic (all / most platforms affected)
Fixed:

This issue is fixed in
12.1 (Future Release)
11.2.0.3
Symptoms:

Related To:

Error May Occur
Internal Error May Occur (ORA-600)
ORA-12839
ORA-600 [qerltcFetch_20]
Constraint Related
Parallel Query (PQO)
_disable_parallel_conventional_load
DML
Description

If you have a parent table and child table with a parent referential constraint
then running Parallel DML again this may fail with an unexpected ORA-12839
or even fail with an ORA-600.

Workaround
 Setting "_disable_parallel_conventional_load" = true can help avoid this.

Please note: The above is a summary description only. Actual symptoms can vary. Matching to any symptoms here does not confirm that you are encountering this problem. For questions about this bug please consult Oracle Support.
References

Bug:9831227 (This link will only work for PUBLISHED bugs)
Note:245840.1 Information on the sections in this article

Friday, May 18, 2012

Resolving common Oracle Wait Events

Resolving common Oracle Wait Events

Wait Event
Possible Causes
Actions
Remarks

db file sequential reads

Use of an unselective index

Fragmented Indexes

High I/O on a particular disk or mount point

Bad application design

Index reads performance can be affected by
 slow I/O subsystem and/or poor database
files layout, which result in a higher average
 wait time


Check indexes on the table to ensure
that the right index is being used

Check the column order of the index
with the WHERE clause of the Top
SQL statements

Rebuild indexes with a high clustering
factor

Use partitioning to reduce the amount
of blocks being visited

Make sure optimizer statistics are up
to date

Relocate ‘hot’ datafiles

Consider the usage of multiple buffer
pools and cache frequently used
indexes/tables in the KEEP pool

Inspect the execution plans of the
SQL statements that access data
through indexes

Is it appropriate for the SQL
statements to access data through
index lookups?

Is the application an online transaction
 processing (OLTP) or decision
support system (DSS)?

Would full table scans be more
efficient?

Do the statements use the right driving
 table?

The optimization goal is to minimize
 both the number of logical and
physical I/Os.


The Oracle process wants a block that is currently not in the SGA, and it is waiting for the database block to be read into the SGA from disk.
Significant db file sequential read wait time is most likely an application issue.
If the
DBA_INDEXES.CLUSTERING_FACTOR of the index approaches the number of blocks in the table, then most of the rows in the table are ordered. This is desirable.

 However, if the clustering factor approaches the number of rows in the table, it means the rows in the table are randomly ordered and thus it requires more I/Os to complete the operation. You can improve the index’s clustering factor by rebuilding the table so that rows are ordered according to the index key and rebuilding the index thereafter.

The OPTIMIZER_INDEX_COST_ADJ and OPTIMIZER_INDEX_CACHING initialization parameters can influence the optimizer to favour the nested loops operation and choose an index access path over a full table scan.

Tuning I/O related waits Note# 223117.1

db file sequential read Reference Note# 34559.1


db file scattered reads

The Oracle session has requested and is
waiting for multiple contiguous database
blocks (up to DB_FILE_MULTIBLOCK_READ_COUNT) to be
 read into the SGA from disk.
Full Table scans

Fast Full Index Scans

Optimize multi-block I/O by setting the
parameter DB_FILE_MULTIBLOCK_READ_COUNT

Partition pruning to reduce number of
blocks visited

Consider the usage of multiple buffer
pools and cache frequently used
indexes/tables in the KEEP pool
Optimize the SQL statement that
initiated most of the waits. The goal is
to minimize the number of physical
and logical reads.
Should the statement access the data
by a full table scan or index FFS?
Would an index range or unique scan
 be more efficient?
Does the query use the right driving
table?
Are the SQL predicates appropriate
for hash or merge join?
 If full scans are appropriate, can
parallel query improve the response
time?
The objective is to reduce the
demands for both the logical and
physical I/Os, and this is best
achieved through SQL and application tuning.
Make sure all statistics are
representative of the actual data.
Check the LAST_ANALYZED date


If an application that has been running fine for a while suddenly clocks a lot of time on the db file scattered read event and there hasn’t been a code change, you might want to check to see if one or more indexes has been dropped or become unusable.
db file scattered read Reference Note# 34558.1

log file parallel write

LGWR waits while writing contents of the
redo log buffer cache to the online log files
on disk
I/O wait on sub system holding the online
 redo log files

Reduce the amount of redo being
generated

Do not leave tablespaces in hot
backup mode for longer than
necessary

Do not use RAID 5 for redo log files

Use faster disks for redo log files

Ensure that the disks holding the
archived redo log files and the online
redo log files are separate so as to
avoid contention

Consider using NOLOGGING or
UNRECOVERABLE options in SQL
statements


Reference Note# 34583.1

log file sync

Oracle foreground processes are waiting
for a COMMIT or ROLLBACK to complete


Tune LGWR to get good throughput to
 disk eg: Do not put redo logs on
RAID5

Reduce overall number of commits by
batching transactions so that there
are fewer distinct COMMIT operations

Reference Note# 34592.1

High Waits on log file sync Note# 125269.1

Tuning the Redolog Buffer Cache and Resolving Redo Latch Contention
Note# 147471.1


buffer busy waits

Buffer busy waits are common in an I/O-
bound Oracle system.
The two main cases where this can occur
are:
Another session is reading the block into the
buffer
Another session holds the buffer in an
incompatible mode to our request
These waits indicate read/read, read/write,
 or write/write contention.
The Oracle session is waiting to pin a buffer.
A buffer must be pinned before it can be
read or modified. Only one process can pin a
buffer at any one time.

This wait can be intensified by a large block
 size as more rows can be contained within
the block

This wait happens when a session wants to
access a database block in the buffer cache
but it cannot as the buffer is "busy

It is also often due to several processes
repeatedly reading the same blocks (eg: if
lots of people scan the same index or data
 block)

The main way to reduce buffer busy
waits is to reduce the total I/O on the
system

Depending on the block type, the
actions will differ

Data Blocks

Eliminate HOT blocks from the
application.

Check for repeatedly scanned /
unselective indexes.

Try rebuilding the object with a higher
PCTFREE so that you reduce the
number of rows per block.

 Check for 'right- hand-indexes'
(indexes that get inserted into at the
same point by many processes).

 Increase INITRANS and MAXTRANS
and reduce PCTUSED This will make
the table less dense .

Reduce the number of rows per block

Segment Header

Increase of number of FREELISTs
  and FREELIST GROUPs

Undo Header

Increase the number of Rollback
Segments


A process that waits on the buffer busy waits event publishes the reason code in the P3 parameter of the wait event.

The Oracle Metalink note # 34405.1 provides a table of reference - codes 130 and 220 are the most common.

Resolving intense and random buffer busy wait performance problems. Note# 155971.1


free buffer waits

This means we are waiting for a free buffer
but there are none available in the cache
because there are too many dirty buffers in
 the cache

Either the buffer cache is too small or the
DBWR is slow in writing modified buffers to
disk

DBWR is unable to keep up to the write
requests

Checkpoints happening too fast – maybe due
 to high database activity and under-sized
 online redo log files

Large sorts and full table scans are filling the
 cache with modified blocks faster than the
 DBWR is able to write to disk
If the  number of dirty buffers that need to be
 written to disk is larger than the number that
DBWR can write per batch, then these waits
 can be observed


Reduce checkpoint frequency  -
increase the size of the online redo
log files

Examine the size of the buffer cache
– consider increasing the size of the
buffer cache in the SGA

Set disk_asynch_io = true set
 
If not using asynchronous I/O 

increase the number of db writer 

processes or dbwr slaves
 
Ensure hot spots do not exist by
spreading datafiles over disks and
disk controllers

Pre-sorting or reorganizing data can
help


Note# 163424.1

enqueue waits

This wait event indicates a wait for a lock
that is held by another session (or sessions)
in an incompatible mode to the requested
mode.

TX Transaction Lock

Generally due to table or application set up
issues

This indicates contention for row-level lock.
 This wait occurs when a transaction tries to
update or delete rows that are currently
 locked by another transaction.

This usually is an application issue.

TM DML enqueue lock

Generally due to application issues, 

particularly if foreign key constraints have 

not been indexed.
 
ST lock
 
Database actions that modify the UET$ (used

extent) and FET$ (free extent) tables require 

the ST lock, which includes actions such as 

drop, truncate, and coalesce.
 
Contention for the ST lock indicates there are 

multiple sessions actively performing 

dynamic disk space allocation or deallocation 

in dictionary managed tablespaces



Reduce waits and wait times

The action to take depends on the lock
 type which is causing the most problems

Whenever you see an enqueue wait
event for the TX enqueue, the first
step is to find out who the blocker is
and if there are multiple waiters for
the same resource

Waits for TM enqueue in Mode 3 are primarily due to unindexed foreign key columns.

Create indexes on foreign keys  < 10g

Following are some of the things you
can do to minimize ST lock contention
in your database:
 
Use locally managed tablespaces
Recreate all temporary tablespaces
using the CREATE TEMPORARY
TABLESPACE TEMPFILE… command.
 


Maximum number of enqueue resources that can be concurrently locked is controlled by the ENQUEUE_RESOURCES parameter.

Reference Note# 34566.1

Tracing sessions waiting on an enqueue Note# 102925.1

Details of V$LOCK view and lock modes Note:29787.1






Cache buffer chain latch

This latch is acquired when searching
for data blocks
Buffer cache is a chain of blocks and
each chain is protected by a child
latch when it needs to be scanned
Hot blocks are another common
cause of cache buffers chains latch
contention. This happens when
multiple sessions repeatedly access
 one or more blocks that are
protected by the same child cache
buffers chains 
latch.
 SQL statements with high
BUFFER_GETS (logical reads) per
EXECUTIONS are the main culprits

Multiple concurrent sessions are
executing the same inefficient SQL
that is going after the same data set

Reducing contention for the cache
buffer chains latch will usually require
reducing logical I/O rates by tuning
and minimizing the I/O requirements of
 the SQL involved. High I/O rates could
be a sign of a hot block (meaning a
block highly accessed).  
Exporting the table, increasing the
PCTFREE significantly, and importing
the data. This minimizes the number of
 rows per block, spreading them over
many blocks. Of course, this is at the
expense of storage and full table
scans operations will be slower

Minimizing the number of records per
block in the table
For indexes, you can rebuild them
with higher PCTFREE values, bearing
in mind that this may increase the
height of the index.
Consider reducing the block size
 Starting in Oracle9i Database, Oracle
supports multiple block sizes. If the
current block size is 16K, you may
move the table or recreate the index in
a tablespace with an 8K block size.
This too will negatively impact full
table scans operations. Also, various
 block sizes increase management
complexity.


The default number of hash latches is usually 1024

The number of hash latches can be adjusted by the parameter _DB_BLOCKS_HASH_LATCHES


Cache buffer LRU chain latch

Processes need to get this latch when they
need to move buffers based on the LRU
block replacement policy in the buffer cache
The cache buffer lru chain latch is acquired
in order to introduce a new block into the
buffer cache and when writing a buffer
back to disk, specifically when trying  to
scan the LRU (least recently used) chain
containing all the dirty blocks in the buffer
cache.
Competition for the cache buffers lru chain 

latch is symptomatic of intense buffer cache

 activity caused by inefficient SQL 

statements. Statements that repeatedly scan

 large unselective indexes or perform full 

table scans are the prime culprits.  
Heavy contention for this latch is generally 

due to heavy buffer cache activity which 

can be caused, for example, by:

 Repeatedly scanning large unselective 

indexes
 

Contention in this latch can be
avoided implementing multiple
buffer pools or increasing the
number of LRU latches with the
 parameter DB_BLOCK_LRU_LATCHES
(The default value is generally
 sufficient for most systems).

Its possible to reduce
contention for the cache buffer
lru chain
 latch by increasing the
size of the buffer cache and
thereby reducing the rate at
which new blocks are
introduced into the buffer cache




Direct Path Reads

These waits are associated with direct read operations which read data directly into the sessions PGA bypassing the SGA

The "direct path read" and "direct path write" wait events are related to operations that are performed in PGA like sorting, group by operation, hash join

In DSS type systems, or during heavy batch periods, waits on "direct path read" are quite normal

However, for an OLTP system these waits are significant
These wait events can occur during sorting operations which is not surprising as direct path reads and writes usually occur in connection with temporary tsegments
SQL statements with functions that require sorts, such as ORDER BY, GROUP BY, UNION, DISTINCT, and ROLLUP, write sort runs to the temporary tablespace when the input size is larger than the work area in the PGA


Ensure the OS asynchronous IO is configured correctly.

Check for IO heavy sessions / SQL and see if the amount of IO can be reduced.

Ensure no disks are IO bound.

Set your PGA_AGGREGATE_TARGET to appropriate value (if the parameter WORKAREA_SIZE_POLICY = AUTO)

Or set *_area_size manually (like sort_area_size and then you have to set WORKAREA_SIZE_POLICY = MANUAL

Whenever possible use UNION ALL instead of UNION, and where applicable use HASH JOIN instead of SORT MERGE and NESTED LOOPS instead of HASH JOIN.


 Make sure the optimizer selects the right driving table. Check to see if the composite index’s columns can be rearranged to match the ORDER BY clause to avoid sort entirely.

Also, consider automating the SQL work areas using PGA_AGGREGATE_TARGET in Oracle9i Database.



Default size of HASH_AREA_SIZE  is twice that of SORT_AREA_SIZE

Larger HASH_AREA_SIZE will influence optimizer to go for hash joins instead of nested loops

Hidden parameter DB_FILE_DIRECT_IO_COUNT can impact the direct path read performance.It sets the maximum I/O buffer size of direct read and write operations. Default is 1M in 9i


Direct Path  Writes

These are waits that are associated with
direct write operations that write data from
users’ PGAs to data files or temporary
tablespaces

Direct load operations (eg: Create Table as
 Select (CTAS) may use this)

Parallel DML operations

Sort IO (when a sort does not fit in memory

If the file indicates a temporary
tablespace check for unexpected disk
sort operations.

Ensure
<Parameter:DISK_ASYNCH_IO> is
TRUE . This is unlikely to reduce wait
times from the wait event timings but
may reduce sessions elapsed times
(as synchronous direct IO is not
accounted for in wait event timings).

Ensure the OS asynchronous IO is
configured correctly.

Ensure no disks are IO bound




Latch Free Waits


















This wait indicates that the process is
waiting for a latch that is currently busy
(held by another process).

When you see a latch free wait event in the
V$SESSION_WAIT view, it means the
process failed to obtain the latch in the
willing-to-wait mode after spinning
_SPIN_COUNT times and went to sleep.
When processes compete heavily for
latches, they will also consume more CPU
resources because of spinning. The result is
a higher response time


If the TIME spent waiting for latches is
significant then it is best to determine
which latches are suffering from
contention
.



A latch is a kind of low level lock.

Latches apply only to memory
structures in the SGA. They do not
apply to database objects. An Oracle
SGA has many latches, and they
exist to protect various memory
structures from potential corruption
 by concurrent access.

The time spent on latch waits is an
effect, not a cause; the cause is that
you are doing too many block gets,
and block gets require
cache buffer chain latching




Library cache latch

The library cache latches protect the
cached SQL statements and objects
definitions held in the library cache within the
shared pool. The library cache latch must be
acquired in order to add a new statement to
the library cache

Application is making heavy use of literal
SQL- use of bind variables will reduce this
latch considerably


Latch is to ensure that the application
is reusing as much as possible SQL
statement representation. Use bind
variables whenever possible in the
application

You can reduce the library cache
latch hold time by properly setting the
SESSION_CACHED_CURSORS parameter

Consider increasing shared pool

Larger shared pools tend to have
long free lists and processes that
need to allocate space in them must
 spend extra time scanning the long
free lists while holding the shared
pool
 latch

if your database is not yet on
Oracle9i Database, an oversized
shared pool can increase the
contention for the shared pool latch.

Shared pool latch

The shared pool latch is used to protect
critical operations when allocating and
freeing memory in the shared pool

Contentions for the shared pool and library
cache
 latches are mainly due to intense hard
 parsing. A hard parse applies to new
cursors and cursors that are aged out and
must be re-executed

The cost of parsing a new SQL statement is
expensive both in terms of
CPU requirements and the number of times
the library cache and shared pool latches
may need to be acquired and released.

Ways to reduce the shared pool latch
are, avoid hard parses when
possible, parse once, execute many.

Eliminating literal SQL is also useful to
avoid the shared pool latch. The size
 of the shared_pool and use of MTS
(shared server option) also greatly
influences the shared pool latch.

The workaround is to set the
initialization parameter
CURSOR_SHARING to FORCE. This
allows statements that differ in literal
 values but are otherwise identical to
share a cursor and therefore reduce
latch contention, memory usage, and
 hard parse.


<Note 62143.1> explains how to
identify and correct problems with the
shared pool, and shared pool latch.


Row cache objects latch


This latch comes into play when user
processes are attempting to  access the
cached data dictionary values.



It is not common to have contention in
this latch and the only way to reduce
contention for this latch is by
increasing the size of the shared pool
(SHARED_POOL_SIZE).

Use Locally Managed tablespaces for
your application objects especially
indexes

Review and amend your database
logical design , a good example is to
merge or decrease the number of
indexes on tables with heavy inserts

Configuring the library cache to an
acceptable size usually ensures that
the data  dictionary cache is also
properly sized. So tuning Library
Cache will tune Row Cache indirectly


Followers